Search results
Results from the WOW.Com Content Network
In molecular biology, the term double helix [1] refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure , and is a fundamental component in determining its tertiary structure .
Other advances in molecular biology stemming from the discovery of the DNA double helix eventually led to ways to sequence genes. James Watson directed the Human Genome Project at the National Institutes of Health. [7] The ability to sequence and manipulate DNA is now central to the biotechnology industry and modern medicine.
DNA replication also works by using a DNA template, the DNA double helix unwinds during replication, exposing unpaired bases for new nucleotides to hydrogen bond to. Gene synthesis, however, does not require a DNA template and genes are assembled de novo. DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The ...
The tertiary arrangement of DNA's double helix in space includes B-DNA, A-DNA, and Z-DNA. Triple-stranded DNA structures have been demonstrated in repetitive polypurine:polypyrimidine Microsatellite sequences and Satellite DNA. B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove ...
DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic double helix. Each single strand of DNA is a chain of four types of nucleotides. Nucleotides in DNA contain a deoxyribose sugar, a phosphate, and a nucleobase.
A double stranded DNA strand dissociating to two single strands produces a sharp cooperative transition. Hyperchromicity can be used to track the condition of DNA as temperature changes. The transition/melting temperature (T m ) is the temperature where the absorbance of UV light is 50% between the maximum and minimum, i.e. where 50% of the DNA ...
Complementarity between two antiparallel strands of DNA. The top strand goes from the left to the right and the lower strand goes from the right to the left lining them up. Left: the nucleotide base pairs that can form in double-stranded DNA. Between A and T there are two hydrogen bonds, while there are three between C and G.
The composition of DNA itself is an essential component to the field of molecular genetics; it is the basis of how DNA is able to store genetic information, pass it on, and be in a format that can be read and translated. [28] DNA is a double stranded molecule, with each strand oriented in an antiparallel fashion.