enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...

  3. Noncommutative unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Noncommutative_unique...

    In mathematics, a noncommutative unique factorization domain is a noncommutative ring with the unique factorization property. Examples The ...

  4. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain). The fundamental theorem of arithmetic says that Q has class number 1.

  5. Irreducible element - Wikipedia

    en.wikipedia.org/wiki/Irreducible_element

    The converse is true for unique factorization domains [2] (or, more generally, GCD domains). Moreover, while an ideal generated by a prime element is a prime ideal , it is not true in general that an ideal generated by an irreducible element is an irreducible ideal .

  6. Square-free element - Wikipedia

    en.wikipedia.org/wiki/Square-free_element

    The unique factorization property means that a non-zero non-unit r can be represented as a product of prime elements r = p 1 p 2 ⋯ p n {\displaystyle r=p_{1}p_{2}\cdots p_{n}} Then r is square-free if and only if the primes p i are pairwise non-associated (i.e. that it doesn't have two of the same prime as factors, which would make it ...

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  8. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    As the positive integers less than s have been supposed to have a unique prime factorization, must occur in the factorization of either or Q. The latter case is impossible, as Q , being smaller than s , must have a unique prime factorization, and p 1 {\displaystyle p_{1}} differs from every q j . {\displaystyle q_{j}.}

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    This lack of unique factorization is a major difficulty for solving Diophantine equations. For example, many wrong proofs of Fermat's Last Theorem (probably including Fermat's "truly marvelous proof of this, which this margin is too narrow to contain") were based on the implicit supposition of unique factorization.