enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    If the dependent variable is referred to as an "explained variable" then the term "predictor variable" is preferred by some authors for the independent variable. [22] An example is provided by the analysis of trend in sea level by Woodworth (1987). Here the dependent variable (and variable of most interest) was the annual mean sea level at a ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    One method conjectured by Good and Hardin is =, where is the sample size, is the number of independent variables and is the number of observations needed to reach the desired precision if the model had only one independent variable. [24] For example, a researcher is building a linear regression model using a dataset that contains 1000 patients ().

  4. Exogenous and endogenous variables - Wikipedia

    en.wikipedia.org/wiki/Exogenous_and_endogenous...

    In an economic model, an exogenous variable is one whose measure is determined outside the model and is imposed on the model, and an exogenous change is a change in an exogenous variable. [1]: p. 8 [2]: p. 202 [3]: p. 8 In contrast, an endogenous variable is a variable whose measure is determined by the model. An endogenous change is a change ...

  5. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...

  6. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    An example is polynomial regression, which uses a linear predictor function to fit an arbitrary degree polynomial relationship (up to a given order) between two sets of data points (i.e. a single real-valued explanatory variable and a related real-valued dependent variable), by adding multiple explanatory variables corresponding to various ...

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Principal component regression (PCR) [7] [8] is used when the number of predictor variables is large, or when strong correlations exist among the predictor variables. This two-stage procedure first reduces the predictor variables using principal component analysis, and then uses the reduced variables in an OLS regression fit. While it often ...

  8. Species distribution modelling - Wikipedia

    en.wikipedia.org/wiki/Species_Distribution_Modelling

    Correlative SDMs model the observed distribution of a species as a function of geographically referenced climatic predictor variables using multiple regression approaches. Given a set of geographically referred observed presences of a species and a set of climate maps, a model defines the most likely environmental ranges within which a species ...

  9. Quantitative structure–activity relationship - Wikipedia

    en.wikipedia.org/wiki/Quantitative_structure...

    A simple example is the relationship between the number of carbons in alkanes and their boiling points. There is a clear trend in the increase of boiling point with an increase in the number carbons, and this serves as a means for predicting the boiling points of higher alkanes .