Search results
Results from the WOW.Com Content Network
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]
One often uses a prior which comes from a parametric family of probability distributions – this is done partly for explicitness (so one can write down a distribution, and choose the form by varying the hyperparameter, rather than trying to produce an arbitrary function), and partly so that one can vary the hyperparameter, particularly in the method of conjugate priors, or for sensitivity ...
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
Hyperparameters: parameters of the prior distribution Hyperpriors : distributions of Hyperparameters Suppose a random variable Y follows a normal distribution with parameter θ {\displaystyle \theta } as the mean and 1 as the variance , that is Y ∣ θ ∼ N ( θ , 1 ) {\displaystyle Y\mid \theta \sim N(\theta ,1)} .
Extracting clusters from this plot can be done manually by selecting ranges on the x-axis after visual inspection, by selecting a threshold on the y-axis (the result is then similar to a DBSCAN clustering result with the same and minPts parameters; here a value of 0.1 may yield good results), or by different algorithms that try to detect the ...
Design and Analysis of Experiments. Handbook of Statistics. pp. 63– 90. Zacks, S. "Adaptive Designs for Parametric Models". Design and Analysis of Experiments. Handbook of Statistics. pp. 151– 180. Kôno, Kazumasa (1962). "Optimum designs for quadratic regression on k-cube" (PDF). Memoirs of the Faculty of Science. Kyushu University.
Firstly, use of a hyperprior allows one to express uncertainty in a hyperparameter: taking a fixed prior is an assumption, varying a hyperparameter of the prior allows one to do sensitivity analysis on this assumption, and taking a distribution on this hyperparameter allows one to express uncertainty in this assumption: "assume that the prior is of this form (this parametric family), but that ...
Specifically, the top-1 expert is always selected, and the top-2th expert is selected with probability proportional to that experts' weight according to the gating function. Later, GLaM [39] demonstrated a language model with 1.2 trillion parameters, each MoE layer using top-2 out of 64 experts. Switch Transformers [21] use top-1 in all MoE layers.