Ads
related to: difference between reflex gauge and magnetic force
Search results
Results from the WOW.Com Content Network
For every scalar function of position and time λ(x, t), the potentials can be changed by a gauge transformation as ′ =, ′ = + without changing the electric and magnetic field. Two pairs of gauge transformed potentials (φ, A) and (φ′, A′) are called gauge equivalent, and the freedom to select any pair of potentials in its gauge ...
The unit was established by the IEC in the 1930s [4] in honour of Danish physicist Hans Christian Ørsted.Ørsted discovered the connection between magnetism and electric current when a magnetic field produced by a current-carrying copper bar deflected a magnetised needle during a lecture demonstration.
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...
A gauge theory is a type of theory in physics.The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). [1]
The above definition does not define the magnetic vector potential uniquely because, by definition, we can arbitrarily add curl-free components to the magnetic potential without changing the observed magnetic field. Thus, there is a degree of freedom available when choosing . This condition is known as gauge invariance.
A reflex gauge is more complex in construction but can give a clearer distinction between gas (steam) and liquid (water). Instead of containing the media in a glass tube, the gauge consists of a vertically oriented slotted metal body with a strong glass plate mounted on the open side of the slot facing the operator.
The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.
Magnetic pole model for H and Ampèrian loop model for B yield the identical field outside of a magnet. Inside they are very different. The field of a magnet is the sum of fields from all magnetized volume elements, which consist of small magnetic dipoles on an atomic level.
Ads
related to: difference between reflex gauge and magnetic force