enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum calculus - Wikipedia

    en.wikipedia.org/wiki/Quantum_calculus

    For 0 < q < 1, the series converges to a function F(x) on an interval (0,A] if |f(x)x α | is bounded on the interval (0, A] for some 0 ≤ α < 1. The q-integral is a Riemann–Stieltjes integral with respect to a step function having infinitely many points of increase at the points q j..The jump at the point q j is q j. Calling this step ...

  3. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    For example, it might happen that f is constrained to a curve = (). In this case, we are actually interested in the behavior of the composite function f ( x , y ( x ) ) {\displaystyle f(x,y(x))} . The partial derivative of f with respect to x does not give the true rate of change of f with respect to changing x because changing x necessarily ...

  4. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    In all these cases, y is an unknown function of x (or of x 1 and x 2), and f is a given function. He solves these examples and others using infinite series and discusses the non-uniqueness of solutions. Jacob Bernoulli proposed the Bernoulli differential equation in 1695. [3] This is an ordinary differential equation of the form

  5. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    The natural logarithm function ln : (0, +∞) → R is a surjective and even bijective (mapping from the set of positive real numbers to the set of all real numbers). Its inverse, the exponential function, if defined with the set of real numbers as the domain and the codomain, is not surjective (as its range is the set of positive real numbers).

  6. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:

  7. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    Examples of proper fractions are 2/3, –3/4, and 4/9; examples of improper fractions are 9/4, –4/3, and 3/3. improper integral In mathematical analysis , an improper integral is the limit of a definite integral as an endpoint of the interval(s) of integration approaches either a specified real number , ∞ {\displaystyle \infty } , − ∞ ...

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.

  9. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity.The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration.