Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
An extremozyme is an enzyme, often created by archaea, which are known prokaryotic extremophiles that can function under extreme environments. Examples of such are those in highly acidic/basic conditions, high/low temperatures, high salinity, or other factors, that would otherwise denature typical enzymes (e.g. catalase, rubisco, carbonic anhydrase). [1]
Polyphenol oxidase is an enzyme found throughout the plant and animal kingdoms, [31] including most fruits and vegetables. [32] PPO has importance to the food industry because it catalyzes enzymatic browning when tissue is damaged from bruising, compression or indentations, making the produce less marketable and causing economic loss.
Benefits of exoenzyme production can also be lost after secretion because the enzymes are liable to denature, degrade or diffuse away from the producer cell. Enzyme production and secretion is an energy intensive process [ 14 ] and, because it consumes resources otherwise available for reproduction, there is evolutionary pressure to conserve ...
Ascorbate is a known cofactor of myrosinase, serving as a base catalyst in glucosinolate hydrolysis. [1] [7] For example, myrosinase isolated from daikon (Raphanus sativus) demonstrated an increase in V max from 2.06 μmol/min per mg of protein to 280 μmol/min per mg of protein on the substrate, allyl glucosinolate (sinigrin) when in the presence of 500 μM ascorbate. [4]
Tannase from Lactobacillus plantarum has 489 amino acid residues and two domains. [5] The two domains of tannase are called the α/β-hydrolase domain and the lid domain. The α/β-hydrolase domain consists of residues 4-204 and 396-469, and is composed of two nine-stranded β-sheets surrounded by four α-helices on one side and two α-helices on the other side.
Different proteins are degraded at different rates. Abnormal proteins are quickly degraded, whereas the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological ...
This function is able to happen due to the presence of invertase since glucose and fructose is sweeter than sucrose is. [8] When looking at invertase across different species of yeasts, it has been known to be more active in some than others. The yeast that invertase is more active in is the yeast bakers use due to its higher sweetness levels.