Search results
Results from the WOW.Com Content Network
Bayesian programming [2] is a formal and concrete implementation of this "robot". Bayesian programming may also be seen as an algebraic formalism to specify graphical models such as, for instance, Bayesian networks , dynamic Bayesian networks , Kalman filters or hidden Markov models .
While naive Bayes often fails to produce a good estimate for the correct class probabilities, [16] this may not be a requirement for many applications. For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class. This is true ...
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
This statistics -related article is a stub. You can help Wikipedia by expanding it.
A Bayes filter is an algorithm used in computer science for calculating the probabilities of multiple beliefs to allow a robot to infer its position and orientation. Essentially, Bayes filters allow robots to continuously update their most likely position within a coordinate system, based on the most recently acquired sensor data.
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...
A loss function is said to be classification-calibrated or Bayes consistent if its optimal is such that / = (()) and is thus optimal under the Bayes decision rule. A Bayes consistent loss function allows us to find the Bayes optimal decision function f ϕ ∗ {\displaystyle f_{\phi }^{*}} by directly minimizing the expected risk and without ...
"On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes" (PDF). Advances in Neural Information Processing Systems. Jebara, Tony (2004). Machine Learning: Discriminative and Generative. The Springer International Series in Engineering and Computer Science. Kluwer Academic (Springer). ISBN 978-1-4020-7647-3.