enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  3. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  4. Time dependent vector field - Wikipedia

    en.wikipedia.org/wiki/Time_dependent_vector_field

    In mathematics, a time dependent vector field is a construction in vector calculus which generalizes the concept of vector fields. It can be thought of as a vector field which moves as time passes. For every instant of time, it associates a vector to every point in a Euclidean space or in a manifold.

  5. One-parameter group - Wikipedia

    en.wikipedia.org/wiki/One-parameter_group

    A smooth vector field on a manifold, at a point, induces a local flow - a one parameter group of local diffeomorphisms, sending points along integral curves of the vector field. The local flow of a vector field is used to define the Lie derivative of tensor fields along the vector field.

  6. Polyvector field - Wikipedia

    en.wikipedia.org/wiki/Polyvector_field

    A (,)-tensor field is a differential -form, a (,)-tensor field is a vector field, and a (,)-tensor field is -vector field. While differential forms are widely studied as such in differential geometry and differential topology , multivector fields are often encountered as tensor fields of type ( 0 , k ) {\displaystyle (0,k)} , except in the ...

  7. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.

  8. Solenoidal vector field - Wikipedia

    en.wikipedia.org/wiki/Solenoidal_vector_field

    An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}

  9. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).