Search results
Results from the WOW.Com Content Network
Both types of BJT function by letting a small current input to the base control an amplified output from the collector. The result is that the BJT makes a good switch that is controlled by its base input. The BJT also makes a good amplifier, since it can multiply a weak input signal to about 100 times its original strength.
An op amp without negative feedback (a comparator) The amplifier's differential inputs consist of a non-inverting input (+) with voltage V + and an inverting input (−) with voltage V −; ideally the op amp amplifies only the difference in voltage between the two, which is called the differential input voltage.
The difference between the non-inverting input voltage and the inverting input voltage is amplified by the op-amp. This connection forces the op-amp to adjust its output voltage to simply equal the input voltage (V out follows V in so the circuit is named op-amp voltage follower). The impedance of this circuit does not come from any change in ...
The BJTs should be matched and in thermal equilibrium, so that the difference amplifier subtracts the second BJT's junction voltage to cancel out in the difference amplifier's output. The constant current source can also be used to set the desired x-axis intercept and allows users to make ratiometric measurements that are relative to a desired ...
In this circuit, the base terminal of the transistor serves as the input, the collector is the output, and the emitter is common to both (for example, it may be tied to ground reference or a power supply rail), hence its name. The analogous FET circuit is the common-source amplifier, and the analogous tube circuit is the common-cathode amplifier.
Figure 1: Basic NPN common collector circuit (neglecting biasing details).. In electronics, a common collector amplifier (also known as an emitter follower) is one of three basic single-stage bipolar junction transistor (BJT) amplifier topologies, typically used as a voltage buffer.
Figure 7: Typical op-amp current source. The simple transistor current source from Figure 4 can be improved by inserting the base-emitter junction of the transistor in the feedback loop of an op-amp (Figure 7). Now the op-amp increases its output voltage to compensate for the V BE drop. The circuit is actually a buffered non-inverting amplifier ...
An explanation follows of how the circuit in Figure 3 works. The operational amplifier is fed the difference in voltages V 1 − V 2 at the top of the two emitter-leg resistors of value R E. This difference is amplified by the op amp and fed to the base of output transistor Q 2.