Search results
Results from the WOW.Com Content Network
The power of 3 multiplying a is independent of the value of a; it depends only on the behavior of b. This allows one to predict that certain forms of numbers will always lead to a smaller number after a certain number of iterations: for example, 4 a + 1 becomes 3 a + 1 after two applications of f and 16 a + 3 becomes 9 a + 2 after four ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The graph of the zero polynomial, f(x) = 0, is the x-axis. In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
The polynomial () (+) is a cubic polynomial: after multiplying out and collecting terms of the same degree, it becomes + +, with highest exponent 3.. The polynomial (+ +) + (+ + +) is a quintic polynomial: upon combining like terms, the two terms of degree 8 cancel, leaving + + + +, with highest exponent 5.
Multiplication symbols are usually omitted, and implied when there is no space between two variables or terms, or when a coefficient is used. For example, 3 × x 2 {\displaystyle 3\times x^{2}} is written as 3 x 2 {\displaystyle 3x^{2}} , and 2 × x × y {\displaystyle 2\times x\times y} may be written 2 x y {\displaystyle 2xy} .
Divide the highest term of the remainder by the highest term of the divisor (3x ÷ x = 3). Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (− ...
graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1] graph join: . Graph with all the edges that connect the vertices of the first graph with the vertices of the second graph. It is a commutative operation (for unlabelled graphs); [2] graph products based on the cartesian product of the vertex sets: