Search results
Results from the WOW.Com Content Network
Suppose f is analytic in a neighborhood of a and f(a) = 0.Then f has a Taylor series at a and its constant term is zero. Because this constant term is zero, the function f(x) / (x − a) will have a Taylor series at a and, when f ′ (a) ≠ 0, its constant term will not be zero.
Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.
The first algorithm for polynomial decomposition was published in 1985, [6] though it had been discovered in 1976, [7] and implemented in the Macsyma/Maxima computer algebra system. [8] That algorithm takes exponential time in worst case, but works independently of the characteristic of the underlying field.
One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0). Therefore, the graph of the function f(x − h) = (x − h) 2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure.
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
This is the case, for example, if f(x) = x 3 − 2x + 2. For this function, it is even the case that Newton's iteration as initialized sufficiently close to 0 or 1 will asymptotically oscillate between these values. For example, Newton's method as initialized at 0.99 yields iterates 0.99, −0.06317, 1.00628, 0.03651, 1.00196, 0.01162, 1.00020 ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.