Search results
Results from the WOW.Com Content Network
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
An integer is positive if it is greater than zero, and negative if it is less than zero. Zero is defined as neither negative nor positive. The ordering of integers is compatible with the algebraic operations in the following way: If a < b and c < d, then a + c < b + d; If a < b and 0 < c, then ac < bc
Let k be a non-negative integer and b be a positive integer greater than . We express n k {\displaystyle n^{k}} in base b : there exist a positive integer m and integers ( c i ) 0 ≤ i < m {\displaystyle (c_{i})_{0\leq i<m}} such that for all i , 0 ≤ c i < b {\displaystyle 0\leq c_{i}<b} and n k = ∑ i < m c i b i {\displaystyle n^{k}=\sum ...
Every positive real number x has a positive square root, that is, there exist a positive real number such that =. Every univariate polynomial of odd degree with real coefficients has at least one real root (if the leading coefficient is positive, take the least upper bound of real numbers for which the value of the polynomial is negative).
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω.
In mathematics, the set of positive real numbers, > = {>}, is the subset of those real numbers that are greater than zero. The non-negative real numbers , R ≥ 0 = { x ∈ R ∣ x ≥ 0 } , {\displaystyle \mathbb {R} _{\geq 0}=\left\{x\in \mathbb {R} \mid x\geq 0\right\},} also include zero.
For example if A and B only contain rational numbers, they can still be cut at by putting every negative rational number in A, along with every non-negative rational number whose square is less than 2; similarly B would contain every positive rational number whose square is greater than or equal to 2.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...