Search results
Results from the WOW.Com Content Network
Wing loading is a useful measure of the stalling speed of an aircraft. Wings generate lift owing to the motion of air around the wing. Larger wings move more air, so an aircraft with a large wing area relative to its mass (i.e., low wing loading) will have a lower stalling speed.
As noted earlier, , =,. The total drag coefficient can be estimated as: = [()], where is the propulsive efficiency, P is engine power in horsepower, sea-level air density in slugs/cubic foot, is the atmospheric density ratio for an altitude other than sea level, S is the aircraft's wing area in square feet, and V is the aircraft's speed in miles per hour.
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...
Aircraft use the wing area (or rotor-blade area) as the reference area, which makes for an easy comparison to lift. Airships and bodies of revolution use the volumetric coefficient of drag, in which the reference area is the square of the cube root of the airship's volume. Sometimes different reference areas are given for the same object in ...
Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...
In the definition of load factor, the lift is not simply that one generated by the aircraft's wing, instead it is the vector sum of the lift generated by the wing, the fuselage and the tailplane, [2]: 395 or in other words it is the component perpendicular to the airflow of the sum of all aerodynamic forces acting on the aircraft.
Air vehicles use a coordinate system of axes to help name important parameters used in the analysis of stability. All the axes run through the center of gravity (called the "CG"): "X" or "x" axis runs from back to front along the body, called the Roll Axis. "Y" or "y" axis runs left to right along the wing, called the Pitch Axis.
ZFW is also defined as OEW + PL. The previous formula becomes: + =. For many types of airplane, the airworthiness limitations include a maximum zero-fuel weight. [1] This limitation is specified to ensure bending moments on the wing roots are not excessive during flight. When the aircraft is loaded before flight, the zero-fuel weight must not ...