Search results
Results from the WOW.Com Content Network
In this example, we will consider a dictionary consisting of the following words: {a, ab, bab, bc, bca, c, caa}. The graph below is the Aho–Corasick data structure constructed from the specified dictionary, with each row in the table representing a node in the trie, with the column path indicating the (unique) sequence of characters from the root to the node.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Ordered search within the Google and Yahoo! search engines is possible using the asterisk (*) full-word wildcards: in Google this matches one or more words, [9] and an in Yahoo! Search this matches exactly one word. [10] (This is easily verified by searching for the following phrase in both Google and Yahoo!: "addictive * of biblioscopy".)
These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence.
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
The Lesk algorithm is based on the assumption that words in a given "neighborhood" (section of text) will tend to share a common topic. A simplified version of the Lesk algorithm is to compare the dictionary definition of an ambiguous word with the terms contained in its neighborhood. Versions have been adapted to use WordNet. [2]
Given a searched element , the lookup primitive traverses the BK-tree to find the closest element of . The key idea is to restrict the exploration of t {\displaystyle t} to nodes that can only improve the best candidate found so far by taking advantage of the BK-tree organization and of the triangle inequality (cut-off criterion).