Search results
Results from the WOW.Com Content Network
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
The long real line pastes together ℵ 1 * + ℵ 1 copies of the real line plus a single point (here ℵ 1 * denotes the reversed ordering of ℵ 1) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ 1 in the long real line but not in the real ...
Positive numbers: Real numbers that are greater than zero. Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal ...
An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...
These are called dyadic numbers and have the form m / 2 n where m is an odd integer and n is a natural number. Put these numbers in the sequence: r = (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, ...). Also, f 2 ( t ) is not a bijection to (0, 1) for the strings in T appearing after the binary point in the binary expansions of 0, 1, and the numbers in ...
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...
Each card has a number on one side and color on the other. Which card or cards must be turned over to test the idea that if a card shows an even number on one face, then its opposite face is blue? The Wason selection task (or four-card problem ) is a logic puzzle devised by Peter Cathcart Wason in 1966.
Such a proof is again a refutation by contradiction. A typical example is the proof of the proposition "there is no smallest positive rational number": assume there is a smallest positive rational number q and derive a contradiction by observing that q / 2 is even smaller than q and still positive.