Search results
Results from the WOW.Com Content Network
RAID (/ r eɪ d /; redundant array of inexpensive disks or redundant array of independent disks) [1] [2] is a data storage virtualization technology that combines multiple physical data storage components into one or more logical units for the purposes of data redundancy, performance improvement, or both.
Diagram of a RAID 1 setup. RAID 1 consists of an exact copy (or mirror) of a set of data on two or more disks; a classic RAID 1 mirrored pair contains two disks.This configuration offers no parity, striping, or spanning of disk space across multiple disks, since the data is mirrored on all disks belonging to the array, and the array can only be as big as the smallest member disk.
In Computers and Intractability [8]: 226 Garey and Johnson list the bin packing problem under the reference [SR1]. They define its decision variant as follows. Instance: Finite set of items, a size () + for each , a positive integer bin capacity , and a positive integer .
A Redundant Array of Inexpensive Servers (RAIS) or Redundant Array of Independent Nodes (RAIN) is the use of multiple servers to maintain service if one server fails. This is similar in concept to how RAID turns a cluster of ordinary disks into a single block device.
The amount of data in one stride multiplied by the number of data disks in the array (i.e., stripe depth times stripe width, which in the geometrical analogy would yield an area) is sometimes called the stripe size or stripe width. [5] Wide striping occurs when chunks of data are spread across multiple arrays, possibly all the drives in the system.
JBOD (just a bunch of disks or just a bunch of drives) is an architecture using multiple hard drives exposed as individual devices.Hard drives may be treated independently or may be combined into one or more logical volumes using a volume manager like LVM or mdadm, or a device-spanning filesystem like btrfs; such volumes are usually called "spanned" or "linear | SPAN | BIG".
A redundant array of independent memory (RAIM) is a design feature found in certain computers' main random access memory. [1] RAIM utilizes additional memory modules and striping algorithms to protect against the failure of any particular module and keep the memory system operating continuously.
A parity drive is a hard drive used in a RAID array to provide fault tolerance. For example, RAID 3 uses a parity drive to create a system that is both fault tolerant and, because of data striping, fast. [1] Basically, a single data bit is added to the end of a data block to ensure the number of bits in the message is either odd or even. [2]