Search results
Results from the WOW.Com Content Network
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean).
These values are used to calculate an E value for the estimate and a standard deviation (SD) as L-estimators, where: E = (a + 4m + b) / 6 SD = (b − a) / 6. E is a weighted average which takes into account both the most optimistic and most pessimistic estimates provided. SD measures the variability or uncertainty in the estimate.
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two deterministic estimators.
where is the mean of the variate and is the mean of the variate . Under simple random sampling the bias is of the order O ( n −1 ). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean ). [ 2 ]
For context, the best single point estimate by L-estimators is the median, with an efficiency of 64% or better (for all n), while using two points (for a large data set of over 100 points from a symmetric population), the most efficient estimate is the 27% midsummary (mean of 27th and 73rd percentiles), which has an efficiency of about 81% ...