Search results
Results from the WOW.Com Content Network
In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the environment or a bath.In general, these interactions significantly change the dynamics of the system and result in quantum dissipation, such that the information contained in the system is lost to its environment.
In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems.
There is an intimate connection of quantum thermodynamics with the theory of open quantum systems. [5] Quantum mechanics inserts dynamics into thermodynamics, giving a sound foundation to finite-time-thermodynamics.
Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. [1] It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. [2]
These representations allows us to calculate things like eigenvalues associated to superoperators. These eigenvalues are particularly useful in the field of open quantum systems, where the real parts of the Lindblad superoperator's eigenvalues will indicate whether a quantum system will relax or not.
A well known example of a two-state system is the spin of a spin-1/2 particle such as an electron, whose spin can have values +ħ/2 or −ħ/2, where ħ is the reduced Planck constant. The two-state system cannot be used as a description of absorption or decay, because such processes require coupling to a continuum.
Extensions to driven-dissipative open quantum systems is given not only for bosonic systems, [4] but also for fermionic systems. [5] The Keldysh formalism provides a systematic way to study non-equilibrium systems, usually based on the two-point functions corresponding to excitations in the system.
In quantum mechanics, a quantum Markov semigroup describes the dynamics in a Markovian open quantum system. The axiomatic definition of the prototype of quantum Markov semigroups was first introduced by A. M. Kossakowski [1] in 1972, and then developed by V. Gorini, A. M. Kossakowski, E. C. G. Sudarshan [2] and Göran Lindblad [3] in 1976. [4]