enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Morris method - Wikipedia

    en.wikipedia.org/wiki/Morris_method

    In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...

  3. Single-cell analysis - Wikipedia

    en.wikipedia.org/wiki/Single-cell_analysis

    This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cellcell interactions at the level of an individual cell, as opposed to more ...

  4. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    This is a workable experimental design, but purely from the point of view of statistical accuracy (ignoring any other factors), a better design would be to give each person one regular sole and one new sole, randomly assigning the two types to the left and right shoe of each volunteer. Such a design is called a "randomized complete block design."

  5. Nelson rules - Wikipedia

    en.wikipedia.org/wiki/Nelson_rules

    The above eight rules apply to a chart of a variable value. A second chart, the moving range chart, can also be used but only with rules 1, 2, 3 and 4. Such a chart plots a graph of the maximum value - minimum value of N adjacent points against the time sample of the range.

  6. One-factor-at-a-time method - Wikipedia

    en.wikipedia.org/wiki/One-factor-at-a-time_method

    The one-factor-at-a-time method, [1] also known as one-variable-at-a-time, OFAT, OF@T, OFaaT, OVAT, OV@T, OVaaT, or monothetic analysis is a method of designing experiments involving the testing of factors, or causes, one at a time instead of multiple factors simultaneously.

  7. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    That is to say, when one or more values are missing for a case, most statistical packages default to discarding any case that has a missing value, which may introduce bias or affect the representativeness of the results. Imputation preserves all cases by replacing missing data with an estimated value based on other available information.

  8. Bivariate analysis - Wikipedia

    en.wikipedia.org/wiki/Bivariate_analysis

    Regression is a statistical technique used to help investigate how variation in one or more variables predicts or explains variation in another variable. Bivariate regression aims to identify the equation representing the optimal line that defines the relationship between two variables based on a particular data set.

  9. Internal validity - Wikipedia

    en.wikipedia.org/wiki/Internal_validity

    In order to allow for inferences with a high degree of internal validity, precautions may be taken during the design of the study. As a rule of thumb, conclusions based on direct manipulation of the independent variable allow for greater internal validity than conclusions based on an association observed without manipulation.