enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plane of incidence - Wikipedia

    en.wikipedia.org/wiki/Plane_of_incidence

    The plane of incidence is defined by the incoming radiation's propagation vector and the normal vector of the surface. In describing reflection and refraction in optics, the plane of incidence (also called the incidence plane or the meridional plane [citation needed]) is the plane which contains the surface normal and the propagation vector of the incoming radiation. [1]

  3. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Let the plane of incidence be the xy plane (the plane of the page), with the angle of incidence θ i measured from j towards i. Let the angle of refraction, measured in the same sense, be θ t, where the subscript t stands for transmitted (reserving r for reflected). In the absence of Doppler shifts, ω does not change on reflection or refraction.

  4. Angle of incidence (optics) - Wikipedia

    en.wikipedia.org/wiki/Angle_of_incidence_(optics)

    The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as optical, acoustic, microwave, and X-ray. In the figure below, the line representing a ray makes an ...

  5. Specular reflection - Wikipedia

    en.wikipedia.org/wiki/Specular_reflection

    Reflection of the incident ray also occurs in the plane of incidence. The law of reflection states that the angle of reflection of a ray equals the angle of incidence, and that the incident direction, the surface normal, and the reflected direction are coplanar.

  6. Reflection (physics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(physics)

    Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.

  7. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Given a normalized light vector (pointing from the light source toward the surface) and a normalized plane normal vector , one can work out the normalized reflected and refracted rays, via the cosines of the angle of incidence and angle of refraction , without explicitly using the sine values or any trigonometric functions or angles: [22]

  8. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    An illustration of the polarization of light that is incident on an interface at Brewster's angle. Brewster's angle (also known as the polarization angle) is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with no reflection.

  9. Total internal reflection - Wikipedia

    en.wikipedia.org/wiki/Total_internal_reflection

    Fig. 1: Underwater plants in a fish tank, and their inverted images (top) formed by total internal reflection in the water–air surface. In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected back into ...