Search results
Results from the WOW.Com Content Network
For face-centered cubic and body-centered cubic lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.
The primitive unit cell for the body-centered cubic crystal structure contains several fractions taken from nine atoms (if the particles in the crystal are atoms): one on each corner of the cube and one atom in the center. Because the volume of each of the eight corner atoms is shared between eight adjacent cells, each BCC cell contains the ...
For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions .
These are the Bravais lattices in three dimensions: P primitive; I body centered (from the German Innenzentriert) F face centered (from the German Flächenzentriert) A centered on A faces only; B centered on B faces only; C centered on C faces only; R rhombohedral
Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).
There are two simple regular lattices that achieve this highest average density. They are called face-centered cubic (FCC) (also called cubic close packed) and hexagonal close-packed (HCP), based on their symmetry. Both are based upon sheets of spheres arranged at the vertices of a triangular tiling; they differ in how the sheets are stacked ...
For a 3-dimensional lattice, the steps are analogous, but in step 2 instead of drawing perpendicular lines, perpendicular planes are drawn at the midpoint of the lines between the lattice points. As in the case of all primitive cells, all area or space within the lattice can be filled by Wigner–Seitz cells and there will be no gaps.
In crystallography, the orthorhombic crystal system is one of the 7 crystal systems.Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct.