Search results
Results from the WOW.Com Content Network
In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, [1] named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions.
The term "Lévy's constant" is sometimes used to refer to / () (the logarithm of the above expression), which is approximately equal to 1.1865691104… The value derives from the asymptotic expectation of the logarithm of the ratio of successive denominators, using the Gauss-Kuzmin distribution .
The continuous mapping theorem states that for a continuous function g, if the sequence {X n} converges in distribution to X, then {g(X n)} converges in distribution to g(X). Note however that convergence in distribution of {X n} to X and {Y n} to Y does in general not imply convergence in distribution of {X n + Y n} to X + Y or of {X n Y n} to XY.
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical ...
In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. [note 1] It is a special case of the inverse-gamma distribution.
In mathematics and statistics, the continuity theorem may refer to one of the following results: the Lévy continuity theorem on random variables;
Continuity theorem may refer to one of two results: Lévy's continuity theorem, on random variables; Kolmogorov continuity theorem, on stochastic processes; In geometry: Parametric continuity, for parametrised curves; Geometric continuity, a concept primarily applied to the conic sections and related shapes; In probability theory