Search results
Results from the WOW.Com Content Network
In graph theory, a branch of mathematics, a periodic graph with respect to an operator F on graphs is one for which there exists an integer n > 0 such that F n (G) is isomorphic to G. [1] For example, every graph is periodic with respect to the complementation operator , whereas only complete graphs are periodic with respect to the operator ...
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. [1] If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. [2] For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3.
Circle with square and octagon inscribed, showing area gap. Suppose that the area C enclosed by the circle is greater than the area T = cr/2 of the triangle. Let E denote the excess amount. Inscribe a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments.
For example, a cube with a side length of 1 meter has a surface area of 6 m 2 and a volume of 1 m 3. If the sides of the cube were multiplied by 2, its surface area would be multiplied by the square of 2 and become 24 m 2. Its volume would be multiplied by the cube of 2 and become 8 m 3.
However, when the normalized angular momentum a/r s = L/mcr s equals the square root of three, a metastable circular orbit is possible at the radius highlighted with a green circle. At higher angular momenta, there is a significant centrifugal barrier (orange curve) and an unstable inner radius, highlighted in red.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
5. A chord of a circle is a line segment connecting two points on the circle; the intersection graph of a collection of chords is called a circle graph. chromatic Having to do with coloring; see color. Chromatic graph theory is the theory of graph coloring. The chromatic number χ(G) is the minimum number of colors needed in a proper coloring of G.
The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...