Search results
Results from the WOW.Com Content Network
Given a system transforming a set of inputs to output values, described by a mathematical function f, optimization refers to the generation and selection of the best solution from some set of available alternatives, [1] by systematically choosing input values from within an allowed set, computing the value of the function, and recording the best value found during the process.
Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function ; a function has a unique value for any input in its domain , and the algorithm is a process that ...
For these models, a nondeterministic algorithm is considered to perform correctly when, for each input, there exists a run that produces the desired result, even when other runs produce incorrect results. This existential power makes nondeterministic algorithms of this sort more efficient than known deterministic algorithms for many problems.
Algorithm X is an algorithm for solving the exact cover problem. It is a straightforward recursive , nondeterministic , depth-first , backtracking algorithm used by Donald Knuth to demonstrate an efficient implementation called DLX, which uses the dancing links technique.
Any randomized algorithm may be interpreted as a randomized choice among deterministic algorithms, and thus as a mixed strategy for Alice. Similarly, a non-random algorithm may be thought of as a pure strategy for Alice. In any two-player zero-sum game, if one player chooses a mixed strategy, then the other player has an optimal pure strategy ...
The non-deterministic Turing machine has very little to do with how we physically want to compute algorithms, but its branching exactly captures many of the mathematical models we want to analyze, so that non-deterministic time is a very important resource in analyzing computational problems.
Here x ≥ 0 means that each component of the vector x should be non-negative, and ‖·‖ 2 denotes the Euclidean norm. Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC [2] and non-negative matrix/tensor factorization. [3] [4] The latter can be considered a generalization of ...
Three notable branches of discrete optimization are: [2] combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures; integer programming