Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.
Download as PDF; Printable version; ... based on their research in single-layer neural networks ... is the mean square error, and it is minimized by the LMS. This is ...
In 1989, Dean A. Pomerleau published ALVINN, a neural network trained to drive autonomously using backpropagation. [47] The LeNet was published in 1989 to recognize handwritten zip codes. In 1992, TD-Gammon achieved top human level play in backgammon. It was a reinforcement learning agent with a neural network with two layers, trained by ...
Depending on the complexity of the model being simulated, the learning rule of the network can be as simple as an XOR gate or mean squared error, or as complex as the result of a system of differential equations. The learning rule is one of the factors which decides how fast or how accurately the neural network can be developed.
Folding activation functions are extensively used in the pooling layers in convolutional neural networks, and in output layers of multiclass classification networks. These activations perform aggregation over the inputs, such as taking the mean, minimum or maximum. In multiclass classification the softmax activation is often used.
For example, a neural network may be more effective than a linear regression model for some types of data. [ 14 ] Increase the amount of training data: If the model is underfitting due to a lack of data, increasing the amount of training data may help.