Search results
Results from the WOW.Com Content Network
The dilogarithm along the real axis. In mathematics, the dilogarithm (or Spence's function), denoted as Li 2 (z), is a particular case of the polylogarithm.Two related special functions are referred to as Spence's function, the dilogarithm itself:
ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
An abbreviated version appeared as "The k th prime is greater than k(log k + log log k − 1) for k ≥ 2", Mathematics of Computation, Vol. 68, No. 225 (1999), pp. 411–415. ^ Erhard Schmidt, "Über die Anzahl der Primzahlen unter gegebener Grenze", Mathematische Annalen , 57 (1903), pp. 195–204.
The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis. In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to ...
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
A detailed historical analysis in 1989 concluded that the formula should be attributed to Euler, and recommended calling it "Euler's finite rotation formula." [ 1 ] This proposal has received notable support, [ 2 ] but some others have viewed the formula as just one of many variations of the Euler–Rodrigues formula , thereby crediting both.
Given that in general for a closed system with generalized coordinates q i and canonical momenta p i, [3] = =, = =, it is immediate (recalling x 0 = ct, x 1 = x, x 2 = y, x 3 = z and x 0 = −x 0, x 1 = x 1, x 2 = x 2, x 3 = x 3 in the present metric convention) that = = (,) is a covariant four-vector with the three-vector part being the ...