Search results
Results from the WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
If D < 1 two alternatives are possible. If b ≥ c, then β ≥ γ (the larger side corresponds to a larger angle). Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ.
Given two sides a and b and the angle between the sides C, the area of the triangle is given by half the product of the lengths of two sides and the sine of the angle between the two sides: [85] Area = Δ = 1 2 a b sin C {\displaystyle {\mbox{Area}}=\Delta ={\frac {1}{2}}ab\sin C}
Tangent to a curve. The red line is tangential to the curve at the point marked by a red dot. Tangent plane to a sphere. In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point.
The p-th polar of a C for a natural number p is defined as Δ Q p f(x, y, z) = 0. This is a curve of degree n−p. When p is n−1 the p-th polar is a line called the polar line of C with respect to Q. Similarly, when p is n−2 the curve is called the polar conic of C.
Let each curve C t in the family be given as the solution of an equation f t (x, y)=0 (see implicit curve), where t is a parameter. Write F(t, x, y)=f t (x, y) and assume F is differentiable. The envelope of the family C t is then defined as the set of points (x,y) for which, simultaneously,
Here (X c, Y c) is the center of the ellipse, and φ is the angle between the x-axis and the major axis of the ellipse. Both parameterizations may be made rational by using the tangent half-angle formula and setting tan t 2 = u . {\textstyle \tan {\frac {t}{2}}=u\,.}