Search results
Results from the WOW.Com Content Network
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
Ramanujan's sum. In number theory, Ramanujan's sum, usually denoted cq (n), is a function of two positive integer variables q and n defined by the formula. where (a, q) = 1 means that a only takes on values coprime to q. Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1]
Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as
Chudnovsky algorithm. The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan 's π formulae. Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places. [2]
Ramanujan–Sato series. In mathematics, a Ramanujan–Sato series[1][2] generalizes Ramanujan ’s pi formulas such as, to the form. by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients , and employing modular forms of higher levels.
The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences.
Ramanujan tau function. Values of |τ (n) | for n < 16,000 with a logarithmic scale. The blue line picks only the values of n that are multiples of 121. The Ramanujan tau function, studied by Ramanujan (1916), is the function defined by the following identity: where q = exp (2πiz) with Im z > 0, is the Euler function, η is the Dedekind eta ...
Sum of cubes of divisors, σ3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable ...