enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  3. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    Ramanujan's sum. In number theory, Ramanujan's sum, usually denoted cq (n), is a function of two positive integer variables q and n defined by the formula. where (a, q) = 1 means that a only takes on values coprime to q. Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1]

  4. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as

  5. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    Chudnovsky algorithm. The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan 's π formulae. Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places. [2]

  6. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    Ramanujan–Sato series. In mathematics, a Ramanujan–Sato series[1][2] generalizes Ramanujan ’s pi formulas such as, to the form. by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients , and employing modular forms of higher levels.

  7. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences.

  8. Ramanujan tau function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_tau_function

    Ramanujan tau function. Values of |τ (n) | for n < 16,000 with a logarithmic scale. The blue line picks only the values of n that are multiples of 121. The Ramanujan tau function, studied by Ramanujan (1916), is the function defined by the following identity: where q = exp (2πiz) with Im z > 0, is the Euler function, η is the Dedekind eta ...

  9. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Sum of cubes of divisors, σ3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable ...