Search results
Results from the WOW.Com Content Network
Probability theory. In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while ...
The normal probability plot is a graphical technique to identify substantive departures from normality. This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures. Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. In a normal probability plot (also called a ...
The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .
Standard normal table. In statistics, a standard normal table, also called the unit normal table or Z table, [1] is a mathematical table for the values of Φ, the cumulative distribution function of the normal distribution. It is used to find the probability that a statistic is observed below, above, or between values on the standard normal ...
The truncated normal is one of two possible maximum entropy probability distributions for a fixed mean and variance constrained to the interval [a,b], the other being the truncated U. [2] Truncated normals with fixed support form an exponential family.
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).
The multivariate normal distribution is said to be "non-degenerate" when the symmetric covariance matrix is positive definite. In this case the distribution has density [5] where is a real k -dimensional column vector and is the determinant of , also known as the generalized variance.
A sigmoid function refers specifically to a function whose graph follows the logistic function. It is defined by the formula: σ {\displaystyle \sigma (x)= {\frac {1} {1+e^ {-x}}}= {\frac {e^ {x}} {1+e^ {x}}}=1-\sigma (-x).} In many fields, especially in the context of artificial neural networks, the term "sigmoid function" is correctly ...