Search results
Results from the WOW.Com Content Network
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. [ 1 ] : xi QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles .
The idea of quantum field theory began in the late 1920s with British physicist Paul Dirac, when he attempted to quantize the energy of the electromagnetic field; just as in quantum mechanics the energy of an electron in the hydrogen atom was quantized. Quantization is a procedure for constructing a quantum theory starting from a classical theory.
Quantum theory also provides accurate descriptions for many previously unexplained phenomena, such as black-body radiation and the stability of the orbitals of electrons in atoms. It has also given insight into the workings of many different biological systems , including smell receptors and protein structures . [ 8 ]
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. [ 1 ] [ 2 ] [ 3 ] In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. [ 2 ]
Quantum mechanics soon gave way to the formulation of quantum field theory (QFT), begun in the late 1920s. In the aftermath of World War 2, more progress brought much renewed interest in QFT, which had since the early efforts, stagnated.
This should not be confused with the idea of a qubit from quantum information theory, because a qubit can be in a superposition of values, whilst the "questions" of RQM are ordinary binary variables. Any quantum measurement is fundamentally a physical interaction between the system being measured and some form of measuring apparatus. By ...
The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a theoretical prediction in quantum field theory that an observer who is uniformly accelerating through empty space will perceive a thermal bath. This means that even in the absence of any external heat sources, an accelerating observer will detect particles and experience ...