Search results
Results from the WOW.Com Content Network
The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.
A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...
s = spin quantum number; m s = spin magnetic quantum number; ℓ = Azimuthal quantum number; m ℓ = azimuthal magnetic quantum number; j = total angular momentum quantum number; m j = total angular momentum magnetic quantum number
The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and m s is described as the spin magnetic quantum number [3] or as the z-component of spin s z. [4] Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum ...
This is often useful, and the values are characterized by the azimuthal quantum number (l) and the magnetic quantum number (m). In this case the quantum state of the system is a simultaneous eigenstate of the operators L 2 and L z, but not of L x or L y. The eigenvalues are related to l and m, as shown in the table below.
The term "azimuthal quantum number" was introduced by Arnold Sommerfeld in 1915 [1]: II:132 as part of an ad hoc description of the energy structure of atomic spectra. . Only later with the quantum model of the atom was it understood that this number, ℓ, arises from quantization of orbital angular moment
The four quantum numbers n, ℓ, m, and s specify the complete and unique quantum state of a single electron in an atom, called its wave function or orbital. Two electrons belonging to the same atom cannot have the same values for all four quantum numbers, due to the Pauli exclusion principle .
The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps: [ 1 ] | ℓ − s | ≤ j ≤ ℓ + s {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} where ℓ is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is ...