enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.

  3. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    s = spin quantum number; m s = spin magnetic quantum number; ℓ = Azimuthal quantum number; m ℓ = azimuthal magnetic quantum number; j = total angular momentum quantum number; m j = total angular momentum magnetic quantum number

  5. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and m s is described as the spin magnetic quantum number [3] or as the z-component of spin s z. [4] Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum ...

  6. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    This is often useful, and the values are characterized by the azimuthal quantum number (l) and the magnetic quantum number (m). In this case the quantum state of the system is a simultaneous eigenstate of the operators L 2 and L z, but not of L x or L y. The eigenvalues are related to l and m, as shown in the table below.

  7. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    The term "azimuthal quantum number" was introduced by Arnold Sommerfeld in 1915 [1]: II:132 as part of an ad hoc description of the energy structure of atomic spectra. . Only later with the quantum model of the atom was it understood that this number, ℓ, arises from quantization of orbital angular moment

  8. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    The four quantum numbers n, ℓ, m, and s specify the complete and unique quantum state of a single electron in an atom, called its wave function or orbital. Two electrons belonging to the same atom cannot have the same values for all four quantum numbers, due to the Pauli exclusion principle .

  9. Total angular momentum quantum number - Wikipedia

    en.wikipedia.org/wiki/Total_angular_momentum...

    The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps: [ 1 ] | ℓ − s | ≤ j ≤ ℓ + s {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} where ℓ is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is ...