enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron temperature - Wikipedia

    en.wikipedia.org/wiki/Neutron_temperature

    A fast neutron is a free neutron with a kinetic energy level close to 1 M eV (100 T J/kg), hence a speed of 14,000 km/s or higher. They are named fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes:

  3. Fast-neutron reactor - Wikipedia

    en.wikipedia.org/wiki/Fast-neutron_reactor

    The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.

  4. Four factor formula - Wikipedia

    en.wikipedia.org/wiki/Four_factor_formula

    The symbols are defined as: [3], and are the average number of neutrons produced per fission in the medium (2.43 for uranium-235). and are the microscopic fission and absorption thermal cross sections for fuel, respectively.

  5. Thermal expansivities of the elements - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansivities_of...

    As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals

  6. Fissile material - Wikipedia

    en.wikipedia.org/wiki/Fissile_material

    A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons (i.e., a thermal system) or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.

  7. Critical mass - Wikipedia

    en.wikipedia.org/wiki/Critical_mass

    Thermal expansion associated with temperature increase also contributes a negative coefficient of reactivity since fuel atoms are moving farther apart. A mass that is exactly critical at room temperature would be sub-critical in an environment anywhere above room temperature due to thermal expansion alone.

  8. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.

  9. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    The ratio of neutrons released per neutron absorbed (η) in 233 U is greater than two over a wide range of energies, including the thermal spectrum. A breeding reactor in the uranium–plutonium cycle needs to use fast neutrons, because in the thermal spectrum one neutron absorbed by 239 Pu on average leads to less than two neutrons.