Search results
Results from the WOW.Com Content Network
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.
The viscosity of an aqueous solution can either increase or decrease with concentration depending on the solute and the range of concentration. For instance, the table below shows that viscosity increases monotonically with concentration for sodium chloride and calcium chloride , but decreases for potassium iodide and cesium chloride (the ...
η(δ) = viscosity of blood in the wall plasma release-cell layering; r = radius of the blood vessel; δ = distance in the plasma release-cell layer; Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels.
The following table illustrates the range of viscosity values observed in common substances. Unless otherwise noted, a temperature of 25 °C and a pressure of 1 atmosphere are assumed. The values listed are representative estimates only, as they do not account for measurement uncertainties, variability in material definitions, or non-Newtonian ...
Reference ranges (reference intervals) for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry (also known as "clinical biochemistry", "chemical pathology" or "pure blood chemistry"), the ...
Hyperviscosity syndrome is a group of symptoms triggered by an increase in the viscosity of the blood.Symptoms of high blood viscosity include spontaneous bleeding from mucous membranes, visual disturbances due to retinopathy, and neurologic symptoms ranging from headache and vertigo to seizures and coma.
Erythrocyte deformability is an important determinant of blood viscosity, hence blood flow resistance in the vascular system. [3] It affects blood flow in large blood vessels, due to the increased frictional resistance between fluid laminae under laminar flow conditions.
He applied colloid principles to describe the stability of the suspension and more relevant to modern circulatory psychology was the study of aggregation of streaming blood and the relation between blood cell distribution, its velocity and apparent viscosity. He concluded the following results: (a) In high flow rates in tubes of diameter (< 0.3 ...