enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample.The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This results in an approximately-unbiased estimator for the variance of the sample mean. [48] This means that samples taken from the bootstrap distribution will have a variance which is, on average, equal to the variance of the total population. Histograms of the bootstrap distribution and the smooth bootstrap distribution appear below.

  6. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  7. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    Thus the sample mean is a random variable, not a constant, and consequently has its own distribution. For a random sample of N observations on the j th random variable, the sample mean's distribution itself has mean equal to the population mean () and variance equal to /, where is the population variance.

  8. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    This shows that the sample mean and sample variance are independent. This can also be shown by Basu's theorem, and in fact this property characterizes the normal distribution – for no other distribution are the sample mean and sample variance independent. [3]

  9. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population and statisticians attempt to collect ...