Search results
Results from the WOW.Com Content Network
The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose shared half of the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity".
Penrose's idea is inspired by quantum gravity because it uses both the physical constants and .It is an alternative to the Copenhagen interpretation which posits that superposition fails when an observation is made (but that it is non-objective in nature), and the many-worlds interpretation, which states that alternative outcomes of a superposition are equally "real," while their mutual ...
Theoretical physicist John Archibald Wheeler of Princeton University recommended this book to anyone interested in the implications of general relativity for cosmology, the singularity theorems, and the physics of black holes, presented in an almost Euclidean fashion, though he acknowledged that this is not a textbook due to its lack of ...
Failure of the cosmic censorship hypothesis leads to the failure of determinism, because it is yet impossible to predict the behavior of spacetime in the causal future of a singularity. Cosmic censorship is not merely a problem of formal interest; some form of it is assumed whenever black hole event horizons are mentioned.
The theorem also does not allow to tell when the singularity takes place, or if it is a gravitational singularity or any other kind of boundary condition. [ 7 ] Some physical theories do not discard the possibility of a non-accelerated expansion before a certain moment in time.
He may have been largely responsible for applying the term singularity theory to the area including the input from algebraic geometry, as well as that flowing from the work of Whitney, Thom and other authors. He wrote in terms making clear his distaste for the too-publicised emphasis on a small part of the territory.
Conformal cyclic cosmology (CCC) is a cosmological model in the framework of general relativity and proposed by theoretical physicist Roger Penrose. [1] [2] [3] In CCC, the universe iterates through infinite cycles, with the future timelike infinity (i.e. the latest end of any possible timescale evaluated for any point in space) of each previous iteration being identified with the Big Bang ...
More precisely, the Hartle-Hawking state is a hypothetical vector in the Hilbert space of a theory of quantum gravity that describes the wave function of the universe.. It is a functional of the metric tensor defined at a (D − 1)-dimensional compact surface, the universe, where D is the spacetime dimension.