Search results
Results from the WOW.Com Content Network
The meso compound must not be confused with a 50:50 racemic mixture of the two optically-active compounds, although neither will rotate light in a polarimeter. It is a requirement for two of the stereocenters in a meso compound to have at least two substituents in common (although having this characteristic does not necessarily mean that the ...
An example of such an enantiomer is the sedative thalidomide, which was sold in a number of countries around the world from 1957 until 1961. It was withdrawn from the market when it was found to cause birth defects. One enantiomer caused the desirable sedative effects, while the other, unavoidably [23] present in equal quantities, caused birth ...
For example, of the naturally occurring amino acids, all are L, and most are (S). For some molecules the (R)-enantiomer is the dextrorotary (+) enantiomer, and in other cases it is the levorotary (−) enantiomer. The relationship must be determined on a case-by-case basis with experimental measurements or detailed computer modeling.
An enantiomeric pair (S,S)- and (R,R)-ethambutol, along with the achiral stereoisomer called meso-form, it holds a diastereomeric relationship with the optically active stereoisomers. The activity of the drug resides in the (S,S)-enantiomer which is 500 and 12 fold more potent than the (R,R)-ethambutol and the meso-form. The drug had initially ...
The stereochemical term enantiotopic refers to the relationship between two groups in a molecule which, if one or the other were replaced, would generate a chiral compound. The two possible compounds resulting from that replacement would be enantiomers. For example, the two hydrogen atoms attached to the second carbon in butane are
Each enantiomer of a chiral compound typically rotates the plane of polarized light that passes through it. The rotation has the same magnitude but opposite senses for the two isomers, and can be a useful way of distinguishing and measuring their concentration in a solution. For this reason, enantiomers were formerly called "optical isomers".
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
In a mixture of enantiomers, these methods can help quantify the optical purity by integrating the area under the NMR peak corresponding to each stereoisomer. Accuracy of integration can be improved by inserting a chiral derivatizing agent with a nucleus other than hydrogen or carbon, then reading the heteronuclear NMR spectrum: for example ...