Search results
Results from the WOW.Com Content Network
The sodium fusion extract is made alkaline by adding NaOH.To this mixture, freshly prepared FeSO 4 solution is added and boiled for some time and then cooled. A few drops of FeCl 3 are added and Prussian blue (bluish green) color forms due to formation of ferric ferrocyanide along with NaCl.
The solubility product, K sp, for AgCl in water is 1.77 × 10 −10 at room temperature, which indicates that only 1.9 mg (that is, ) of AgCl will dissolve per liter of water. [1] The chloride content of an aqueous solution can be determined quantitatively by weighing the precipitated AgCl, which conveniently is non-hygroscopic since AgCl is ...
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The same equation relating the concentrations of acid and base applies. The concept of neutralization is not limited to reactions in solution. For example, the reaction of limestone with acid such as sulfuric acid is also a neutralization reaction. [Ca,Mg]CO 3 (s) + H 2 SO 4 (aq) → (Ca 2+, Mg 2+)(aq) + SO 2− 4 (aq) + CO 2 (g) + H 2 O
Sodium chloride / ˌ s oʊ d i ə m ˈ k l ɔːr aɪ d /, [8] commonly known as edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chlorine ions. It is transparent or translucent, brittle, hygroscopic , and occurs as the mineral halite .
In some reactions between highly reactive metals (usually from Group 1 or Group 2) and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer, [16] a process thermodynamically understood using the Born–Haber cycle. [17] Salts are formed by salt-forming reactions. A base and an acid, e.g., NH 3 + HCl → ...
Silver sulfate precipitates as a solid when an aqueous solution of silver nitrate is treated with sulfuric acid: . 2 AgNO 3 + H 2 SO 4 → Ag 2 SO 4 + 2 HNO 3. It is purified by recrystallization from concentrated sulfuric acid, a step that expels traces of nitrate. [7]
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [5] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base.