enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    If is a linear transformation mapping to and is a column vector with entries, then = for some matrix , called the transformation matrix of . [ citation needed ] Note that A {\displaystyle A} has m {\displaystyle m} rows and n {\displaystyle n} columns, whereas the transformation T {\displaystyle T} is from R n {\displaystyle \mathbb {R} ^{n ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The matrix Q is the change of basis matrix of the similarity transformation. Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ.

  5. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...

  6. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    A Givens rotation acting on a matrix from the left is a row operation, moving data between rows but always within the same column. Unlike the elementary operation of row-addition, a Givens rotation changes both of the rows addressed by it.

  7. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    where is the Givens rotation matrix with the angle chosen such that the given pair of off-diagonal elements become equal after the rotation, and where is the Jacobi transformation matrix that zeroes these off-diagonal elements. The iterations proceeds exactly as in the Jacobi eigenvalue algorithm: by cyclic sweeps over all off-diagonal elements.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.