Ad
related to: distance formula between two cities
Search results
Results from the WOW.Com Content Network
The distance between sets A and B is the infimum of the distances between any two of their respective points: (,) =, (,). This does not define a metric on the set of such subsets: the distance between overlapping sets is zero, and this distance does not satisfy the triangle inequality for any metric space with two or more points (consider the ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the distance from a point to a line.
When the cities are viewed as points in the plane, many natural distance functions are metrics, and so many natural instances of TSP satisfy this constraint. The following are some examples of metric TSPs for various metrics. In the Euclidean TSP (see below), the distance between two cities is the Euclidean distance between the corresponding ...
The minimum distance d is the distance along a great circle that runs through s and t. It is calculated in a plane that contains the sphere center and the great circle, , =, where θ is the angular distance of two points viewed from the center of the sphere, measured in radians.
This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length. The taxicab distance is also sometimes known as rectilinear distance or L 1 distance (see L p space). [1]
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
Ad
related to: distance formula between two cities