Search results
Results from the WOW.Com Content Network
In digital signal processing, a discrete Fourier series (DFS) is a Fourier series whose sinusoidal components are functions of discrete time instead of continuous time. A specific example is the inverse discrete Fourier transform (inverse DFT).
For example, several lossy image and sound compression methods employ the discrete Fourier transform: the signal is cut into short segments, each is transformed, and then the Fourier coefficients of high frequencies, which are assumed to be unnoticeable, are discarded. The decompressor computes the inverse transform based on this reduced number ...
These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.
The coefficients can be given/assumed, such as a music synthesizer or time samples of a waveform. In the latter case, the exponential form of Fourier series synthesizes a discrete-time Fourier transform where variable represents frequency instead of time.
By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now denotes the discrete-time Fourier transform (DTFT) operator. Consider two sequences u [ n ] {\displaystyle u[n]} and v [ n ] {\displaystyle v[n]} with transforms U {\displaystyle U} and V {\displaystyle V} :
That is, it takes a function from the time domain into the frequency domain; it is a decomposition of a function into sinusoids of different frequencies; in the case of a Fourier series or discrete Fourier transform, the sinusoids are harmonics of the fundamental frequency of the function being analyzed.
Tai chi is a yoga-like practice that involves a series of slow, gentle movements and physical postures, a meditative state of mind and controlled breathing, per the U.S. National Center for ...
If () is a periodic function, with period , that has a convergent Fourier series, then: ^ = = (), where are the Fourier series coefficients of , and is the Dirac delta function. In other words, the Fourier transform is a Dirac comb function whose teeth are multiplied by the Fourier series coefficients.