enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...

  3. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  4. Ultrasound energy - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_energy

    The energy generally travels through most mediums in the form of a wave in which particles are deformed or displaced by the energy then reestablished after the energy passes. Types of waves include shear, surface, and longitudinal waves with the latter being one of the most common used in biological applications.

  5. Medical applications of radio frequency - Wikipedia

    en.wikipedia.org/wiki/Medical_applications_of...

    The energy was applied to the body with inductive coils of wire or capacitive plates insulated from the body, which reduced the risk of burns. By the 1940s microwaves were being used experimentally. In 1926 William T. Bovie discovered that RF currents applied to a scalpel could cut and cauterize tissue in medical operations, and electrosurgery ...

  6. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    (E is Energy; h is the Planck constant; c is the speed of light; λ is wavelength.) When an X-ray photon collides with an atom, the atom may absorb the energy of the photon and boost an electron to a higher orbital level, or if the photon is extremely energetic, it may knock an electron from the atom altogether, causing the atom to ionize.

  7. Electromagnetic radiation and health - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation...

    Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues, for example by overheating or inducing electrical currents. [28]

  8. Ultrasound - Wikipedia

    en.wikipedia.org/wiki/Ultrasound

    Both continuous wave and pulsed systems are used. The principle behind a pulsed-ultrasonic technology is that the transmit signal consists of short bursts of ultrasonic energy. After each burst, the electronics looks for a return signal within a small window of time corresponding to the time it takes for the energy to pass through the vessel.

  9. Bioelectromagnetics - Wikipedia

    en.wikipedia.org/wiki/Bioelectromagnetics

    Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...