enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solar constant - Wikipedia

    en.wikipedia.org/wiki/Solar_constant

    The solar constant (G SC) measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation ( total solar irradiance ) per unit area.

  3. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    Solar radiation maps are built using databases derived from satellite imagery, as for example using visible images from Meteosat Prime satellite. A method is applied to the images to determine solar radiation. One well validated satellite-to-irradiance model is the SUNY model. [40] The accuracy of this model is well evaluated.

  4. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  5. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure on objects near the Earth may be calculated using the Sun's irradiance at 1 AU, known as the solar constant, or G SC, whose value is set at 1361 W/m 2 as of 2011. [17] All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation.

  6. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  7. Surface power density - Wikipedia

    en.wikipedia.org/wiki/Surface_power_density

    As the source emits electromagnetic radiation of a given wavelength, the far-field electric component of the wave E, the far-field magnetic component H, and power density are related by the equations: E = H × 377 and Pd = E × H. Pd = H 2 × 377 and Pd = E 2 ÷ 377 where Pd is the power density in watts per square meter (one W/m 2 is equal to ...

  8. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    When used with a spectroscopic reflectometry tool, the Forouhi–Bloomer dispersion equations specify n and k for amorphous and crystalline materials as a function of photon energy E. Values of n and k as a function of photon energy, E , are referred to as the spectra of n and k , which can also be expressed as functions of the wavelength of ...

  9. Einstein (unit) - Wikipedia

    en.wikipedia.org/wiki/Einstein_(unit)

    The einstein (symbol E) is an obsolete unit with two conflicting definitions. It was originally defined as the energy in one mole of photons (6.022 × 10 23 photons). [1] [2] Because energy is inversely proportional to wavelength, the unit is frequency dependent.

  1. Related searches how to calculate the solar constant energy and wavelength of one wave is equal

    how to calculate the solar constantsolar constants wikipedia
    solar radiation constantis the solar constant real
    what is the sun's constant