enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  3. Projection - Wikipedia

    en.wikipedia.org/wiki/Projection

    Projection (mathematics), any of several different types of geometrical mappings Projection (linear algebra), a linear transformation P from a vector space to itself such that P 2 = P; Projection (set theory), one of two closely related types of functions or operations in set theory; Projection (measure theory), use of a projection map in ...

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Vector projection, also known as vector resolute or vector component, a linear mapping producing a vector parallel to a second vector; Vector-valued function, a function that has a vector space as a codomain; Vectorization (mathematics), a linear transformation that converts a matrix into a column vector

  5. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  6. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane. The angle, usually represented as θ or φ (the Greek letter phi ), is measured as the offset from the line collinear with the x -axis in the positive direction; the angle is typically reduced to lie ...

  7. Spatial gradient - Wikipedia

    en.wikipedia.org/wiki/Spatial_gradient

    Homogeneous regions have spatial gradient vector norm equal to zero. When evaluated over vertical position (altitude or depth), it is called vertical derivative or vertical gradient; the remainder is called horizontal gradient component, the vector projection of the full gradient onto the horizontal plane. Examples: Biology

  8. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  9. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    Definition: [7] The midpoint of two elements x and y in a vector space is the vector ⁠ 1 / 2 ⁠ (x + y). Theorem [ 7 ] [ 8 ] — Let A : X → Y be a surjective isometry between normed spaces that maps 0 to 0 ( Stefan Banach called such maps rotations ) where note that A is not assumed to be a linear isometry.