Search results
Results from the WOW.Com Content Network
For such purposes, doses should be evaluated in terms of absorbed dose (in gray, Gy), and where high-LET radiations (e.g., neutrons or alpha particles) are involved, an absorbed dose, weighted with an appropriate RBE, should be used" Radiation weighting factors are largely based on the RBE of radiation for stochastic health risks. However, for ...
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. [5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α.
Alpha emitters such as actinium-225 are favored in cancer treatment because of the short range (a few cell diameters) of alpha particles in tissue and their high energy, rendering them highly effective in targeting and killing cancer cells—specifically, alpha particles are more effective at breaking DNA strands.
Particle radiation consists of a stream of charged or neutral particles, both charged ions and subatomic elementary particles. This includes solar wind, cosmic radiation, and neutron flux in nuclear reactors. Alpha particles (helium nuclei) are the least penetrating. Even very energetic alpha particles can be stopped by a single sheet of paper.
Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount of absorbed dose of gamma rays, which is given a weighting factor of 1.
Alpha radiation is dangerous when alpha-emitting radioisotopes are inhaled or ingested (breathed or swallowed). This brings the radioisotope close enough to sensitive live tissue for the alpha radiation to damage cells. Per unit of energy, alpha particles are at least 20 times more effective at cell-damage than gamma rays and X-rays.
In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. [1] [2] Stopping power is also interpreted as the rate at which a material absorbs the kinetic energy of a charged particle.
There are special plastic shields that stop beta particles, and air will stop most alpha particles. The effectiveness of a material in shielding radiation is determined by its half-value thicknesses, the thickness of material that reduces the radiation by half. This value is a function of the material itself and of the type and energy of ...