enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.

  4. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    Description of each point in the thermodynamic cycles. The Otto Cycle is an example of a reversible thermodynamic cycle. 1→2: Isentropic / adiabatic expansion: Constant entropy (s), Decrease in pressure (P), Increase in volume (v), Decrease in temperature (T)

  5. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermodynamic terms, this is a consequence of the fact that the internal pressure of an ideal gas vanishes. Mayer's relation allows us to deduce the value of C V from the more easily measured (and more commonly tabulated) value of C P : C V = C P − n R . {\displaystyle C_{V}=C_{P}-nR.}

  6. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  8. Diesel cycle - Wikipedia

    en.wikipedia.org/wiki/Diesel_cycle

    The net work produced is also represented by the area enclosed by the cycle on the p–V diagram. The net work is produced per cycle and is also called the useful work, as it can be turned to other useful types of energy and propel a vehicle (kinetic energy) or produce electrical energy. The summation of many such cycles per unit of time is ...

  9. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C). For reversible processes, such as those found in the Carnot cycle: