Search results
Results from the WOW.Com Content Network
Development of the neural tube. During the third week of embryonic growth, the brain begins to develop in the early fetus in a process called morphogenesis. [2] Neuroepithelial cells of the ectoderm begin multiplying rapidly and fold in forming the neural plate, which invaginates during the fourth week of embryonic growth and forms the neural ...
Histologically, these cells are classified as pseudostratified columnar cells. [ 1 ] After recruitment from the ectoderm, the neuroectoderm undergoes three stages of development: transformation into the neural plate , transformation into the neural groove (with associated neural folds ), and transformation into the neural tube .
The neural tube develops in two ways: primary neurulation and secondary neurulation. Primary neurulation divides the ectoderm into three cell types: The internally located neural tube; The externally located epidermis; The neural crest cells, which develop in the region between the neural tube and epidermis but then migrate to new locations
In vertebrate embryos, the ectoderm can be divided into two parts: the dorsal surface ectoderm also known as the external ectoderm, and the neural plate, which invaginates to form the neural tube and neural crest. [4] The surface ectoderm gives rise to most epithelial tissues, and the neural plate gives rise to most neural tissues.
Parietal epithelial cell (PEC) Podocyte; Angioblast → Endothelial cell; Mesangial cell. Intraglomerular; Extraglomerular; Juxtaglomerular cell; Macula densa cell; Stromal cell → Interstitial cell → Telocytes; Kidney proximal tubule brush border cell; Kidney distal tubule cell; Connecting tubule cells; α-intercalated cell; β-intercalated ...
The face and neck development of the human embryo refers to the development of the structures from the third to eighth week that give rise to the future head and neck.They consist of three layers, the ectoderm, mesoderm and endoderm, which form the mesenchyme (derived form the lateral plate mesoderm and paraxial mesoderm), neural crest and neural placodes (from the ectoderm). [1]
The formation of the neural tube from the ectoderm is called neurulation. The ventral part of the neural tube is called the basal plate; the dorsal part is called the alar plate. The hollow interior is called the neural canal. By the end of the fourth week of gestation, the open ends of the neural tube, called the neuropores, close off. [5] A ...
The neural plate switches from E-cadherin expression to N-cadherin and N-CAM expression to recognize each other as the same tissue and close the tube. This change in expression stops the binding of the neural tube to the epidermis. The notochord plays an integral role in the development of the neural tube.