Search results
Results from the WOW.Com Content Network
An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. As with polynomials, it is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
All rational numbers are real, but the converse is not true. Irrational numbers (): Real numbers that are not rational. Imaginary numbers: Numbers that equal the product of a real number and the imaginary unit , where =. The number 0 is both real and imaginary.
The imaginary unit can also be multiplied by any arbitrary real number to form an imaginary number. These numbers can be pictured on a number line, the imaginary axis, which as part of the complex plane is typically drawn with a vertical orientation, perpendicular to the real axis which is drawn horizontally.
The question of whether natural or real numbers form definite sets is therefore independent of the question of whether infinite things exist physically in nature. Proponents of intuitionism, from Kronecker onwards, reject the claim that there are actually infinite mathematical objects or sets. Consequently, they reconstruct the foundations of ...
Real numbers lie on the horizontal axis, and imaginary numbers lie on the vertical axis. The imaginary unit or unit imaginary number, denoted as i, is a mathematical concept which extends the real number system to the complex number system . The imaginary unit's core property is that i 2 = −1.
Argand diagram refers to a geometric plot of complex numbers as points z = x + iy using the horizontal x-axis as the real axis and the vertical y-axis as the imaginary axis. [3] Such plots are named after Jean-Robert Argand (1768–1822), although they were first described by Norwegian–Danish land surveyor and mathematician Caspar Wessel ...
If no such polynomial exists then the number is called transcendental. More generally the theory deals with algebraic independence of numbers. A set of numbers {α 1, α 2, …, α n} is called algebraically independent over a field K if there is no non-zero polynomial P in n variables with coefficients in K such that P(α 1, α 2, …, α n) = 0.