enow.com Web Search

  1. Ad

    related to: how to solve recurring decimal numbers examples in math

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    Stylistic impression of the repeating decimal 0.9999..., representing the digit 9 repeating infinitely. In mathematics, 0.999... (also written as 0. 9, 0.., or 0.(9)) is a repeating decimal that is an alternative way of writing the number 1. Following the standard rules for representing numbers in decimal notation, its value is the smallest ...

  4. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  5. Repdigit - Wikipedia

    en.wikipedia.org/wiki/Repdigit

    A variation of repdigits called Brazilian numbers are numbers that can be written as a repdigit in some base, not allowing the repdigit 11, and not allowing the single-digit numbers (or all numbers will be Brazilian). For example, 27 is a Brazilian number because 27 is the repdigit 33 in base 8, while 9 is not a Brazilian number because its ...

  6. Vinculum (symbol) - Wikipedia

    en.wikipedia.org/wiki/Vinculum_(symbol)

    A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...

  7. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    The method works because the original numbers are 'decimal' (base 10), the modulus is chosen to differ by 1, and casting out is equivalent to taking a digit sum. In general any two 'large' integers, x and y, expressed in any smaller modulus as x' and y' (for example, modulo 7) will always have the same sum, difference or product as their ...

  8. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...

  9. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only k {\displaystyle k} previous terms of the sequence appear in the equation, for a parameter k {\displaystyle k} that is independent of n {\displaystyle n} ; this number k ...

  1. Ad

    related to: how to solve recurring decimal numbers examples in math