Search results
Results from the WOW.Com Content Network
For chordal graphs, and for special cases of chordal graphs such as interval graphs and indifference graphs, the greedy coloring algorithm can be used to find optimal colorings in polynomial time, by choosing the vertex ordering to be the reverse of a perfect elimination ordering for the graph.
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
DSatur is a graph colouring algorithm put forward by Daniel Brélaz in 1979. [1] Similarly to the greedy colouring algorithm, DSatur colours the vertices of a graph one after another, adding a previously unused colour when needed.
Misra & Gries (1992) describe a polynomial time algorithm for coloring the edges of any graph with Δ + 1 colors, where Δ is the maximum degree of the graph. That is, the algorithm uses the optimal number of colors for graphs of class two, and uses at most one more color than necessary for all graphs.
FKT algorithm; Flood fill; Graph exploration algorithm; Matching (graph theory) Max flow min cut theorem; Maximum-cardinality search; Shortest path. Dijkstra's algorithm; Bellman–Ford algorithm; A* algorithm; Floyd–Warshall algorithm; Topological sorting. Pre-topological order
The Recursive Largest First (RLF) algorithm is a heuristic for the NP-hard graph coloring problem.It was originally proposed by Frank Leighton in 1979. [1]The RLF algorithm assigns colors to a graph’s vertices by constructing each color class one at a time.
Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.